CAML Memo*

Undergraduate S1

Nathalie “Junior” Bouquet

2023

Elements of the Language

Special Characters, Separators and Comments

Some characters and character combinations have special meanings as operators, separators, blanks. . . They
will be seen as we use them. Comments are delimited by (* and *).

Identifier Construction Rules
e Identifiers are sequences of letters (*a’. .’z *A’..°Z?), digits (?0°..°9?) and ’_’ (the underscore
character).
e CAML is case-sensitive (not only for identifiers).
o Identifiers start with:
— a lowercase letter!;
— an underscore ’_’ if followed by at least another character.
e Identifiers must differ from keywords.
e Identifiers must be meaningful!

Basic Data Types and Operators
Integers: int

Range of values 64-bits platforms: [—202,262 — 1] (32-bits: [—230,230 — 1])

Values: 1 45 -69

Operators: + - % / (integer division?) mod = <> < > <= »>=
Some functions: succ pred abs

Special values: max_int min_int

Floating-point numbers: float

Double precision (64 bits) numbers: mantissa on 53 bits and exponent € [—1022,1023]

Values: 12.5 -0.5 3. -3. 3e2 5.75e-2

Operators: +. -. *x, /. = <> < > <= >=

Some functions: sqrt ceil floor abs_float log cos...
Special values: max_float min_float infinity neg_infinity nan

Booleans: bool

Values: true false

Operators: not || && = <>

Characters: char

ASCII code: [0, 127]

ISO 8859-1 standard: [128, 255]

Values: a’ A7 0§ 90 2\065° ’\n’ 3
Operators: = <> < > <= >=

Some functions: Char.code Char.chr Char.escaped

*All CaMmL examples here were evaluated (interpreted) under Camr 4.07.
IExcept for constructors or modules names (not part of the program).
20nly in N for now.

33\065°: character with ASCII code 65. *\n’: linefeed.

Algorithmics: CAML
CAML Memo

Undergraduate S1
EpriTA

Character strings: string

Finite sequence of characters.

Length (0,257 — 9] (32-bit: 224 — 5)
Values: "a string" "a" "" (empty string)
Operators: (concatenation) = <> < > <= >=

Access to a character:
Some functions:

s.[i] is the i*" (0 < i < length(s)) character (type char) of s.
String.length String.sub

Some conversion functions

float_of_int : int -> float integer — floating-point

int_of_float :

float -> int

floating-point — integer (truncated)

int_of_char :
char_of_int : int
Char.escaped :

char -> int = Char.code

-> char = Char.chr
char -> string

character — ASCII code
ASCII code — character
character — string

string_of_int :
int_of_string :
string_of_float :
float_of_string :

int -> string
string -> int
float -> string
string -> float

integer — string

string — integer
floating-point — string
string — floating-point

1 Phrases: Expressions and Definitions

Phrases are either simple expressions or definitions (declarations).
When using the interactive mode, phrases must be finished with ; ;.

1.1 Expressions

An expression can be either:

primary : a simple value 15 b4

structured : an operation a + 15 "Hello " ~ "world"
between parentheses (3*a) (true || false)
a function application cos X float_of_int 15

f (666 * 42 = 27972) && ("Hello" < "World");;
- : bool = true

An expression may contain local definition(s) (see bellow), alternatives, "pattern matching" (studied
later). ..

1.2 Definitions
Simple “’global* definitions

let ident = expression

Let binding: The name ident is bound to the value of the expression.

f let a =
val a :

1+2;;
int = 3

Once bound, a name is bound to the same value (cannot be changed),
but it can be hidden by a new binding with the same name. ..

Multiple global definitions

let ident; = expression;
and ident, = expressiony

and ident, = expression,

ti let one = 1 and two = 2. and three = ’3? ;;
val one : int = 1

val two : float = 2.

val three : char = ’3’

Algorithmics: CAML

Undergraduate S1
CAML Memo

EpriTA

Local definitions

"Simple“ local definition: | let ident = expression; in expressions

flet a=1+2in a * 3
- : int =9

2

let ident; = expr; and ...and ident; = expr;

Multiple local definitions: in let ident;11 — expriy1 and ...and ident; — expr;

in expression,

f let a
let x
X

I
-

and b = 3 in
a+bandy=a-b>bin
*y o5

- : int = -8

’An expression with a local definition is an expression

2 Functions

2.1 Functions with One Parameter

Define a function: llet fx= ea:pression‘ f let succ x = x + 1

20

Type: £ : typey -> typeres val succ : int -> int = <fun>

Application of the function fto the value z: f succ 3 ;;
- : int = 4

Function applications have higher precedence than other operators.

fzty = (o) +y frtgy = (2 + ()]

f succ 3%2 ;; f succ (3 * 2) ;;
- : int = 8 - : int =7

Thus, if the parameter is not a primary expression, it has to be parenthesized.

f succ -1 ;;
Characters 0-4:* Error: This expression has type int -> int

but an expression was expected of type int
f succ (-1) ;;
- : int =0

2.2 Functions with Several Parameters

Definition: llet foy— e:ﬂpression‘ f let average a b = float_of_int(a + b) /. 2.;;
val average : int -> int -> float = <fun>
Type: £ : type, -> typey -> typeres

f average 2 3 ;; (* same as (average 2) 3 *)
Application to z and y: ’fa: y = (fo) y‘ - : float = 2.5

f average (2 3) ;;

Function applications associate to the left Error: Thl,s ?xpresmon has 'type '1nt .
This is not a function; it cannot be applied.

Therefore: ’f (gz) # fg a:‘

f succ succ 2 ;;
Error: This function has type int -> int
It is applied to too many arguments; maybe you forgot a ¢;’.°
f succ (succ 2) ;;
- : int = 4

Watch out: let f (z, y) = expression is a function with 1 parameter (the pair (z, y))
of type type; * type, -> typeres

4Indication of the scope of the errors will be omitted on the next examples.
5This (;?) will be explained later. ..

Algorithmics: CAML Undergraduate S1
CAML Memo EpiTA

3 Case Analysis

3.1 Conditional

’if condition then erpression; else erpressiony

e condition is a boolean expression ;
e expression; and expressiony are of the same type ;

e the conditional evaluates to the value of expression; if condition evaluates to the boolean true, and
to the value of expressions if condition evaluates to the boolean false.

The conditional is an expression.

f if 2 > 1 then f let absolute_value x =
"higher" if x >= 0 then
else X
"lower" ;; else
- : string = "higher" -X 33

val absolute_value : int -> int =

THIS WILL BE
A BIG HELP.

<fun>

