
Caml Memo
*

Undergraduate S1

Nathalie �Junior� Bouquet

2023

Elements of the Language

Special Characters, Separators and Comments

Some characters and character combinations have special meanings as operators, separators, blanks. . . They
will be seen as we use them. Comments are delimited by (* and *).

Identi�er Construction Rules

� Identi�ers are sequences of letters ('a'..'z' 'A'..'Z'), digits ('0'..'9') and '_' (the underscore
character).

� Caml is case-sensitive (not only for identi�ers).

� Identi�ers start with:

� a lowercase letter1;
� an underscore '_' if followed by at least another character.

� Identi�ers must di�er from keywords.

� Identi�ers must be meaningful!

Basic Data Types and Operators

Integers: int

Range of values 64-bits platforms: [−262, 262 − 1] (32-bits: [−230, 230 − 1])
Values: 1 45 -69
Operators: + - * / (integer division2) mod = <> < > <= >=

Some functions: succ pred abs

Special values: max_int min_int

Floating-point numbers: float

Double precision (64 bits) numbers: mantissa on 53 bits and exponent ∈ [−1022, 1023]
Values: 12.5 -0.5 3. -3. 3e2 5.75e-2
Operators: +. -. *. /. = <> < > <= >=

Some functions: sqrt ceil floor abs_float log cos . . .
Special values: max_float min_float infinity neg_infinity nan

Booleans: bool

Values: true false

Operators: not || && = <>

Characters: char

ASCII code: [0, 127]
ISO 8859-1 standard: [128, 255]
Values: 'a' 'A' '$' '9' '\065' '\n' 3

Operators: = <> < > <= >=

Some functions: Char.code Char.chr Char.escaped

*All Caml examples here were evaluated (interpreted) under Caml 4.07.
1Except for constructors or modules names (not part of the program).
2Only in N for now.
3
'\065': character with ASCII code 65. '\n': linefeed.

1

Algorithmics: Caml
Caml Memo

Undergraduate S1
Epita

Character strings: string

Finite sequence of characters.
Length [0, 257 − 9] (32-bit: 224 − 5)
Values: "a string" "a" "" (empty string)
Operators: � (concatenation) = <> < > <= >=

Access to a character: s.[i] is the ith (0 ≤ i < length(s)) character (type char) of s.
Some functions: String.length String.sub

Some conversion functions

float_of_int : int -> float integer → �oating-point
int_of_float : float -> int �oating-point → integer (truncated)

int_of_char : char -> int = Char.code character → ASCII code
char_of_int : int -> char = Char.chr ASCII code → character

Char.escaped : char -> string character → string

string_of_int : int -> string integer → string
int_of_string : string -> int string → integer

string_of_float : float -> string �oating-point → string
float_of_string : string -> float string → �oating-point

1 Phrases: Expressions and De�nitions

Phrases are either simple expressions or de�nitions (declarations).
When using the interactive mode, phrases must be �nished with ;;.

1.1 Expressions

An expression can be either:

primary : a simple value 15 x

structured : an operation a + 15 "Hello " � "world"

between parentheses (3*a) (true || false)

a function application cos x float_of_int 15

♯ (666 * 42 = 27972) && ("Hello" < "World");;

- : bool = true

An expression may contain local de�nition(s) (see bellow), alternatives, "pattern matching" (studied
later). . .

1.2 De�nitions

Simple �global� de�nitions

let ident = expression

Let binding: The name ident is bound to the value of the expression.

♯ let a = 1 + 2 ;;

val a : int = 3

Once bound, a name is bound to the same value (cannot be changed),
but it can be hidden by a new binding with the same name. . .

Multiple global de�nitions

let ident1 = expression1

and ident2 = expression2

. . .
and identn = expressionn

♯ let one = 1 and two = 2. and three = '3' ;;

val one : int = 1

val two : float = 2.

val three : char = '3'

2

Algorithmics: Caml
Caml Memo

Undergraduate S1
Epita

Local de�nitions

�Simple� local de�nition: let ident = expression1 in expression2

♯ let a = 1 + 2 in a * 3 ;;

- : int = 9

Multiple local de�nitions:

let ident1 = expr1 and . . . and identi = expri
in let identi+1 = expri+1 and . . . and identj = exprj
. . .
in expressionn

♯ let a = 1 and b = 3 in

let x = a + b and y = a - b in

x * y ;;

- : int = -8

An expression with a local de�nition is an expression

2 Functions

2.1 Functions with One Parameter

De�ne a function: let f x = expression

Type: f : typex -> typeres

Application of the function f to the value x: f x

♯ let succ x = x + 1 ;;

val succ : int -> int = <fun>

♯ succ 3 ;;

- : int = 4

Function applications have higher precedence than other operators.

f x + y ≡ (f x) + y f x + g y ≡ (f x) + (g y)

♯ succ 3*2 ;; ♯ succ (3 * 2) ;;

- : int = 8 - : int = 7

Thus, if the parameter is not a primary expression, it has to be parenthesized.

♯ succ -1 ;;

Characters 0-4:4 Error: This expression has type int -> int

but an expression was expected of type int

♯ succ (-1) ;;

- : int = 0

2.2 Functions with Several Parameters

De�nition: let f x y = expression

Type: f : typex -> typey -> typeres

Application to x and y: f x y ≡ (f x) y

Function applications associate to the left

♯ let average a b = float_of_int(a + b) /. 2.;;

val average : int -> int -> float = <fun>

♯ average 2 3 ;; (* same as (average 2) 3 *)
- : float = 2.5

♯ average (2 3) ;;

Error: This expression has type int

This is not a function; it cannot be applied.

Therefore: f (g x) ̸= f g x

♯ succ succ 2 ;;

Error: This function has type int -> int

It is applied to too many arguments; maybe you forgot a `;'.5

♯ succ (succ 2) ;;

- : int = 4

Watch out: let f (x, y) = expression is a function with 1 parameter (the pair (x, y))
of type typex * typey -> typeres

4Indication of the scope of the errors will be omitted on the next examples.
5This (`;') will be explained later. . .

3

Algorithmics: Caml
Caml Memo

Undergraduate S1
Epita

3 Case Analysis

3.1 Conditional

if condition then expression1 else expression2

� condition is a boolean expression ;

� expression1 and expression2 are of the same type ;

� the conditional evaluates to the value of expression1 if condition evaluates to the boolean true, and
to the value of expression2 if condition evaluates to the boolean false.

The conditional is an expression.

♯ if 2 > 1 then

"higher"

else

"lower" ;;

- : string = "higher"

♯ let absolute_value x =

if x >= 0 then

x

else

-x ;;

val absolute_value : int -> int = <fun>

4

