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Unless otherwise stated, the environment is assumed to be empty at the beginning of each exercise.

1 Basics

Expressions and De�nitions

Exercise 1.1 (Evaluations)

What will the successive Caml evaluation results of the following phrases be?

♯ let a = 11 + 7 * 3 ;;

♯ let b = 3 in 6 + b ;;

♯ let a = 3 in let c = 2 + a ;;

♯ let c = let a = 3 in 2 + a ;;

♯ let c = a * b ;;

♯ let a = 2 in b = 5 in a * b ;;

♯ let a = 5 in let b = 2 * a in a * b ;;

♯ let a = 5 and b = 2 * a in a * b ;;

♯ (let x = 2 in x * (x - 1)) + (let x = 3 in x * (x + 1)) ;;

♯ let x = 2 and y = 5 in

let y = x and z = y in

y + z ;;

♯ let x = 2 and y = 5 in

let y = x in

let z = y in

y + z ;;

♯ let a=let a=let a=1 in 2*a and b=let b=2 in 2*b in let a=a+b and b=a-b in a*a-b*b;;



2 1 BASICS

Basic Data Types

Exercise 1.2 (Types and Values)

What are the types of the following expressions and what do they evaluate to?

♯ 1. +. 2. ;;

♯ 1 + 1.5 ;;

♯ 1 +. 1.5 ;;

♯ 1 / 2 ;;

♯ 5 / 2 = 4 / 2 ;;

♯ 5 mod 2 ;;

♯ 4 mod 2 ;;

♯ 10-2 * 2 ;;

♯ 10 * 24 mod 10 ;;

♯ 24 mod 10 * 10 ;;

♯ "A string" ;;

♯ "" ;;

♯ 'a' ;;

♯ '' ;;

♯ "Hello Word" ^ '!' ;;

♯ 1. < 3 ;;

♯ 1 < 2 < 3 ;;

♯ "how do string comparisons work?" > "how do strings work?" ;;

♯ 'Z' < 'a' ;;

♯ let f x = x + 1 and g x = x + 1 in f = g ;;

♯ 1 < 2 && 3. > 5. ;;

♯ false || (1/0 = 0) ;;

♯ true || (1/0 = 0) ;;

♯ true && (1/0 = 0) ;;

♯ false && (1/0 = 0) ;;

♯ false && (1.5 > 1) ;;

Exercise 1.3 (Logic)

Let a, b and c be three boolean values.

1. Simplify the following Caml expressions:

� a && true
� a && false
� a && not a
� a || true
� a || false
� a || not a
� (a && not b) || (not a && b)
� (a && b) || (not a && not b)

2. Replace the ?? by the suitable operator.

� not (a && b) is equivalent to not a ?? not b
� not (a || b) is equivalent to not a ?? not b

3. What expression(s) is (are) equivalent to the below expression?

(a && b) || (a && c)

� a && (b || a) && c
� a && (b || c)
� (a && b) || c
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2 Functions

One Parameter

Exercise 2.1 (Function types and applications)

The following functions are in the environment:

� sqrt : float -> float (square root)

� float_of_int : int -> float

� int_of_float : float -> int

Evaluate the following phrases and correct any possible mistakes:

♯ let f x = x * x ;;

♯ f -4 ;;

♯ f 2 + 3 ;;

♯ f (2 + 3) ;;

♯ let g x =

let f x = x + 1 in

f x*2 ;;

♯ g 5 ;;

♯ let f1 x = int_of_float x / 2 ;;

♯ let f2 x = sqrt float_of_int f1 x ;;

♯ let f3 x = x mod 2 = 0 in let f4 x = f3 x+1 in f4 5 ;;

♯ let x = 12 and f x = 2 * x ;;

♯ let a = 3 and f x = x + a ;;

♯ let g1 x = true && (x/0 = 0) ;;

♯ g1 0 ;;

♯ let g2 x = false && (1.5 > x+1) ;;

♯ g2 0 ;;

♯ let g3 x = let a = 12 in x * x ;;

♯ g3 30 ;;

Exercise 2.2 (Power)

Write the function power30 : int -> int that takes x as parameter and computes x30: Multiplica-
tion is the only allowed operator, the fewer there are, the better it is!

Exercise 2.3 (Take a Chance)

Write the following Caml functions:

mirror: takes a positive integer n with two non-zero digits1 as parameter and returns its �mirror�.

abba: Use mirror to write a function which for any number with two non-zero digits ab computes abba.

stammer: Use the two previous functions to write the function which for any number of the form ab
returns baababba.

Application examples:
♯ mirror 15 ;;

- : int = 51

♯ abba 42 ;;

- : int = 4224

♯ stammer 18 ;;

- : int = 81181881

1For the moment, we will not mind results when the parameter is not a non-zero two-digit positive integer.



4 2 FUNCTIONS

Several Parameters

Exercise 2.4 (Function Applications)

Evaluate the following phrases and correct any possible mistakes.

♯ let sum a b c d = a + b + c + d ;;

♯ sum 2 0 2 4 ;;

♯ let build a b c d = a * 1000 + b * 100 + c * 10 + d ;;

♯ build 2 0 2 9 ;;

♯ let f x y = x mod y ;;

♯ let g x y z = x + y = z ;;

♯ f (2, 5) ;;

♯ let a = 20 and b = 3 in f (a b) ;;

♯ g -4 -5 -9 ;;

♯ f (f 25 7) (f 4 3) ;;

♯ g (f 5 2 * 2) (5 - f 13 4) (f 20 7) ;;

♯ f (g 5 2 7) (4 * 12) ;;

Exercise 2.5 (Function Types)

float_of_int : int -> float and int_of_float : float -> int are in the environment.
Give the types of the following functions:

♯ let divmod x y = (x / y, x mod y) ;;

♯ let test a b c = (float_of_int a *. b) > 4. && c = 'A' ;;

♯ let chapi x y =

let a = 3. *. x in

let b = int_of_float a mod y in

b = 0 ;;

♯ let chapo x y z =

let g a =

let b = float_of_int (a * x) in

(b +. y) /. 2.

in int_of_float (g z) ;;

Exercise 2.6 (Hours, Minutes, Seconds)

The parameters are assumed "valid" (minutes and seconds in [0, 60[, hours ∈ N).

1. Write the function sec_of_time which converts a duration represented by three integers (hours,
minutes, seconds) into seconds. Example: 23h 13m 59s = 83639s

2. Write the function time_of_sec which converts seconds in hours, minutes and seconds (which will
be represented by the triple (h,mn, s)).

3. Use the two previous functions to write the function add_times which adds two durations (each
represented by 3 integers). Example: 12h 22m 15s + 15h 13m 10s = 27h 35m 25s

Application examples:

♯ sec_of_time 23 13 59 ;;

- : int = 83639

♯ time_of_sec 83639 ;;

- : int * int * int = (23, 13, 59)

♯ add_times 12 22 15 15 13 10 ;;

- : int * int * int = (27, 35, 25)
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3 Case analysis

Conditional

Exercise 3.1 (Evaluations)

Evaluate the following phrases. Whenever possible, write more simple equivalent functions.

♯ let test b = if b then true else 0 ;;

♯ let add a b =

(if a > b then a - b else b - a)

+ (if a <= b then b / a else a / b) ;;

♯ add 10 5 ;;

♯ let f a b c =

(if a > b then

if b > c then a + b else c + a

else

if a > c then a + b else b + c) *

(if a > b then

if b > c then a - b else a - c

else

if a > c then a - b else b - c) ;;

♯ f 1 2 3 ;;

♯ let all_even a b c d =

if a mod 2 = 0 then

if b mod 2 = 0 then

if c mod 2 = 0 then

if d mod 2 = 0 then

true

else

false

else

false

else

false

else

false ;;

♯ all_even 0 2 4 6 ;;

Exercise 3.2 (Conditional vs logical)

For each logical formula below, write aCaml boolean function using only conditional expressions (without
boolean operators) while trying to simplify as much as possible.

1. a ∧ b logical and

2. a ∨ b logical or

3. ¬a ∨ b logical implication: a → b

Find for this two last formulas an equivalent non logical operator.

4. (a ∧ ¬b) ∨ (¬a ∧ b) logical exclusive or

5. (a → b) ∧ (b → a) logical equivalence: a ≡ b
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Exercise 3.3 (Orders)

De�ne the following functions:

1. max2 et min2 which respectively return the maximum and the minimum values of two integers ;

2. max3 et min3 which respectively return the maximum and the minimum values of three integers
without using the prede�ned / previous functions ;

3. middle3 which returns the value of the middle among 3 integers (you can use previous functions) ;

4. max4 et min4 which respectively return the maximum and the minimum values of four integers:
(use the previous functions!).

Exercise 3.4 (Sum of Squares)

Write the function highest_square_sum which for three given integers returns the sum of the squares
of the two highest.

Use the functions de�ned at the exercise 3.3.

Application examples:

♯ highest_square_sum 3 2 1 ;;

- : int = 13

♯ highest_square_sum 1 (-5) 10 ;;

- : int = 101

♯ highest_square_sum (-1) (-2) (-3) ;;

- : int = 5
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Pattern matching

Exercise 3.5 (Evaluations)

What will be the evaluation results of the following phrases? Correct
any possible mistakes and try to eliminate the "warnings".

♯ let f1 x = match x with

| 0 -> 0

| y -> 1 / y ;;

♯ let switchonoff x = match x with

"on" -> true

| "off" -> false ;;

♯ let a = 42 and b = 666 in

match a * b - 27972 with

| 0 -> "zero"

| x when x > 0 -> "positive"

| _ -> "negative" ;;

♯ let square x = match x with

x when x > 0 -> x * x

| x when x <= 0 -> invalid_arg "x has to be positive" ;;

♯ square 5 ;;

♯ square (-5) ;;

♯ let parity n =

if n >= 0 then

match n with

0 | 2 | 4 | 6 | 8 -> "even"

| 1 | 3 | 5 | 7 | 9 -> "odd"

else

failwith "negative";;

in

parity 8 ;; (* test with (-10), 34 ... *)

♯ let grade a b =

match (a + b) / 2 with

x when x > 15 -> 'A'

| x when x > 5 -> 'D'

| 8 | 9 | 10 -> 'C'

| x when x > 11 -> 'B'

| _ -> 'E' ;;

♯ grade 12 14 ;;

♯ let h x y =

match x with

0 -> 0

| y -> 1

| _ -> -1 ;;

♯ h 5 5 ;;

♯ h 5 3 ;;
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Exercise 3.6 (Simpli�cations)

Give the types of the following functions. What do they compute?
Write more simple equivalent functions!

1. ♯ let test a =

let f n =

if n < 0 then

-1

else

1

in

match f a * a with

0 | 1 | 2 | 3 | 4 -> true

| n when n >= 10 -> false

| _ -> true ;;

2. ♯ let f a b = match a with

0 -> 0

| x when x < 0 -> (match b with

0 -> 0

| _ -> -x + x/b*b)

| x -> (match b with

| 0 -> 0

| y when y<0 -> x - (x/(-y))*(-y)

| y -> x - x/y*y) ;;

Exercise 3.7 (Postage)

The aim of this exercise is to write a fonction calculating the
postage rate of a package under 3kg for shipments in France. Rates
are given in the following table:

Weight up to Economic Standard Express

500g 3,4 ¿ 4,6 ¿ 9,1 ¿
1000g 4,6 ¿ 5,9 ¿ 11 ¿
2000g 5,1 ¿ 6,5 ¿ 13,5 ¿
3000g 6,9 ¿ 7,2 ¿ 14,2 ¿

The 3 kinds of rates will be represented using the character
strings "eco", "standard" and "express".

1. Write the function rate_eco which computes the postage rate
for shipping a package in economic, based on the weight.

2. In the same way as the rate_eco function, write rate_standard and rate_express, both functions
which compute the postage rate for shipping a package in standard and express.

3. Write the function rate which allows us to compute the postage rate for shipping a package knowing
its weight and the rate code.

4. Can we solve the problem using fewer functions? Try to combine the rate functions rate_eco,
rate_standard and rate_express in one.

♯ rate 750 "eco" ;;

- : float = 4.6

♯ rate (-150) "standard" ;;

Exception: Invalid_argument "weight has to be positive".

♯ rate 150 "drone" ;;

Exception: Failure "unknown code".

♯ rate 3500 "express" ;;

Exception: Failure "too heavy".
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Pattern matching, anonymous functions and cartesian product

Exercise 3.8 (Evaluation)

What will the successive evaluations of the following phrases give?

♯ let a = let b = (0, true) in (b, "one") ;;

♯ let (x, y) = a in x ;;

♯ let (a, b) = (1, 2) ;;

♯ let (c, _) = (a, b) ;;

♯ let f c = let (x, y) = c in let z = (x+1, not y) in (x, z) ;;

♯ let g x y z = match (z, x) with

(1, _) -> (1, x)

| (y, true) -> (2 * y, x)

| _ -> failwith "error" ;;

♯ g true "" 2 ;;

♯ let f x = match x with

((1, true), _) -> 1

| ((2, false), x) -> 3

| (x, "aa") -> let (a, b) = x in a

| _ -> 2 ;;

♯ let f x y =

let g x = (x + 1)/ 2

in

match (not x, g y) with

(true, _) -> true

| (_, 42) -> false

| _ -> failwith "error" ;;

♯ let x = 5 in function a -> function b ->

let y = 2 in float_of_int (a * x) > (float_of_int y +. b) ;;

♯ let test = function

| (true, b) -> b

| _ -> false ;;

♯ let f = function

((0, _), _) | (_, (0, _)) -> (0, false)

| ((x, sx), (y, sy)) when sx = sy -> (x * y, false)

| ((x, true), (y, sy)) -> (x * y, not sy)

| ((x, _), (y, sy)) -> (x * y, sy) ;;

♯ let f = function

"and" -> (function (v1, v2) -> v1 && v2)

| "or" -> (function (v1, v2) -> v1 || v2)

| "xor" -> (function (v1, v2) -> v1 <> v2)

| "imply" -> (function (v1, v2) -> not v1 || v2)

| _ -> failwith "unknown operator" ;;

♯ let h x y = match (x, y) with

(x, x) -> true

| _ -> false ;;
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Exercise 3.9 ("Anonymous Pattern Matching")

The functions to write must necessarily use pattern matching but without match!

1. Write a function that counts the number of 0 in an integer pair.

♯ count (0, 0) ;;

- : int = 2

♯ count (0, 1) ;;

- : int = 1

♯ count (4, 5) ;;

- : int = 0

2. Write the following function: ∀(m,n) ∈ Z× Z, f(m,n) =

 0 ifm = 0
2m ifm ̸= 0 & n = 0
m.n ifm ̸= 0 & n ̸= 0

3. Let the Caml function or3 be de�ned below. Find an equivalent function without using logical
operators.

♯ let or3 (a, b, c) = a || b || c ;;

Exercise 3.10 (Jet lag)

We want to compute the solar time lag given in h, m, s between two
places on earth, of which are known the longitude in o, ' and " West
('W') or East ('E') compared with the Prime meridian (which runs
through Greenwich, England). For example, the point 3o12'15�E is
1h5mn31s in advance in comparison with the point 13o10'30�W.
Longitudes are given from 180oW to 0oE, and from 0oW to 180oE.
The longitude of the change of date line (dashed line) is 180o.
To determine the solar time lag between two points, thereby
avoiding the problems of date change, we will compute for each
point its lag with Greenwich, then we will compute the di�erence
between these two lags.

Clue : 360/24 = 15
⇒ 15o = 1h

⇒ 3o12'15�E = 11535�
= 769s
= 0h 12 mn 49 s

Write a function time_difference which returns the time lag between two points of given longitudes.
Advice :
Start by breaking down the problem into sub-problems to determine the necessary functions.

Examples:

♯ time_difference (3, 12, 15, 'E') (0, 0, 0, 'W');;

- : string = "earlier:0h 12mn 49s"

♯ time_difference (3, 12, 15, 'E') (13, 10, 30, 'W') ;;

- : string = "earlier : 1h 5mn 31s"

♯ time_difference (0, 1, 4, 'W') (2, 0, 5, 'E') ;;

- : string = "later: 0h 8mn 4s"
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4 Recursivity

Exercise 4.1 (What is it?)

What do the following functions compute (consider all cases)?

♯ let rec f1 n = match n with

0 -> 0

| n -> n + f1 (n-1) ;;

♯ let rec f2 n d = match n with

n when n < 0 -> invalid_arg "f2: n < 0"

| 0 -> 0

| n when n mod d = 0 -> n + f2 (n-1) d

| n -> f2 (n-1) d ;;

♯ let rec f3 d n =

if n <= 1 then

d

else

d * f3 (d - 1) (n - 1) ;;

♯ let rec f4 = function

0 -> 0

| n -> n / 2 + f4 (2*n) ;;

♯ let rec mystery x =

if x < 10 then

1

else

1 + mystery (x/10) ;;

What will be the results of the evaluations of the following phrases and what will be displayed?

♯ let rec print1 n = ♯ let rec print2 n =

if n = 0 then if n = 0 then

() ()

else else

begin begin

print_int n; print_char ' '; print2 (n-1);

print1 (n-1) print_int n; print_char ' ';

end ;; end ;;

♯ print1 5 ;; ♯ print2 5 ;;

♯ let rec g n d =

if n = 0 then

0

else

begin

print_int n; print_char ' '; print_int d; print_newline();

if n mod d = 0 then

1 + g (n/10) d

else

g (n/10) (d-1);

end ;;

♯ g 435567 7 ;;
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Exercise 4.2 (Sequence)

Write a function which computes from a given n ∈ N the nth element value of the sequence de�ned
by un = 4un−1 + 2 from u0 = 1.

Exercise 4.3 (Geometric progression)

Write a recursive function which computes the nth (n ∈ N) element of a geometric progression from
u0 and of common ratio q.

Exercise 4.4 (Euclid)

Write a function that computes the greatest common divisor (GCD) of two nonzero integers using the
Euclidean algorithm, the principle of which is "reminded" below.

Euclidean algorithm :

If a and b are two nonzero naturals with a ≥ b, if r is the nonzero remainder of the division of
a by b: a = bq + r with 0 < r < b, then the GCD of a and b is equal to the GCD of b and r.
If a is divisible by b then the GCD of a and b is equal to b.

Exercise 4.5 (Addition)

Write a Caml function that computes x+ y ((x, y) ∈ N2) only adding 1.

Exercise 4.6 (Multiplication)

Write a function which computes x× y ((x, y) ∈ N2) using only the operators + and -.

How to handle the cases where (x, y) ∈ Z2?

Exercise 4.7 (Euclidean division)

Reminder: Given two naturals a and b, with b ̸= 0, the Euclidian division gives two naturals the
quotient q and the remainder r such that:

a = bq + r, r < b

1. Write a function that computes the quotient of the division of a by b with a and b two naturals.
The function must use only additive operators (the allowed operators are + and -).

2. Write a function that computes the remainder of the integer division of a by b. The function must
use only additive operators.

3. Bonus: Write a function that computes the quotient and the remainder (a pair) of the Euclidian
division of two naturals (use a single recursive function).
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Exercise 4.8 (Fibonacci)

Write a function which computes the nth term (n ∈ N) of the Fibonacci numbers de�ned below:

F (n) =

{
1 if n ≤ 1
F (n− 1) + F (n− 2) otherwise

Exercise 4.9 (Mirror)

Write a function which "reverses" the digits of any natural number.

Two versions :

1. The result will be a character string containing the "mirror" number.
Use the function string_of_int : int -> string.

♯ reverse 1234 ;;

- : string = "4321"

2. The result will be of integer type (neither using the previous function, nor character strings).

♯ reverse_int 1234 ;;

- : int = 4321

Exercise 4.10 (Egyptian multiplication)

Write a function that computes x × y ((x, y) ∈ N2) only using additions, multiplications by 2 and
divisions by 2.

Clues :

� 10 ∗ 13 = 2 ∗ (5 ∗ 13) because 10 is even.

� 11 ∗ 13 = 2 ∗ (5 ∗ 13) + 13 because 11 is odd.

Exercise 4.11 (Power)

Let x ∈ R and n ∈ N.

1. Write a recursive function which computes xn using only the "classical" method (by successive
multiplications).
What is the complexity order of this version?

2. Write a new function which computes xn using the exponentiation by squaring principle: be inspired
by the Egyptian multiplication principle (exercise 4.10) for reducing the number of multiplications.
What is the complexity order of this version?
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Exercise 4.12 (Prime number)

Write a function that determines whether an integer greater than 1 is a prime number.

Exercise 4.13 (Perfect)

A number is a perfect number if it is a integer greater than 1 that is equal to the sum
of its proper positive divisors, which are its positive divisors excluding the number
itself.
Example : 28 = 1 + 2 + 4 + 7 + 14.

Write a function which determines if a natural number n given (n ̸= 1) is perfect.

Bonus:
The function could display the divisors of n.

Display example:

Divisors:

1

2

4

7

14

28 is perfect

How to improve the function complexity?
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